Page 1	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

ENCLOSURES:

CLW/ES/3/SK-1/0054 Alt 'B' C CLW/ES/3/SK-2/0054 Alt 'B' C

SPECIFICATION FOR DC DC CONVERTER USED FOR 3-PHASE ELECTRIC LOCOMOTIVE OF INDIAN RAILWAYS

Specification No: CLW/ES/3/0054, Alt. 'B' C

ISSUE DATE: 07.03.1999

ISSUED BY:

DY. CHIEF ELECTRICAL ENGINEER/D-II

CHITTARANJAN LOCOMOTIVE WORKS

P.O CHITTARANJAN – 713331

DIST. BARDHMAN (WEST), WEST BENGAL (INDIA)

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Page 2	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

ALTERATION RECORD SHEET

SL NO.	DATE OF AMENDMENT	PAGE NO.	ALTERAT ION NUMBER	REASON	AUTHORITY
1.	06.03.2003		А	Flammability test included	Sd/
2.	08.02.2022	8,12	В	Existing Drawing in the specification of DC-DC converter at Page 8 which is for reference only. Maximum allowable overall Dimension of DC-DC converter and Dimensional drawing of Panel mounting plate of DC-DC converter is incorporated as Page 12.	Sd/
3.		5	С	 Impulse voltage withstand test may be performed as per IEC 60255-27 as IEC 60255-4 has been superseded and 500 ohms has been removed. High frequency disturbance test or 1 MHz damped oscillatory wave immunity test/HFD may be performed as per IEC 60255-26 and 200 ohms has been removed. Conducted emission test may be introduced in the specification which may be performed as per IEC 62236-3-2 / IEC 61000-6-4 (CISPR 16-2-1). 	

Note: Specification has been digitized and all alterations have been incorporated.

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Page 3	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

SPECIFICATION FOR DC-DC CONVERTER

The item should be fulfill our requirement condition as given below:

SI No.	Descriptions	Page No.
1.	SCOPE	4
2.	CLIMATIC & ENVIRONMENTAL CONDITIONS	4
3.	STANDARD & APPROVAL	4
4.	ENVIRONMENT CONDITIONS	5
5.	TECHNICAL DATA	7 & 12
6.	BLOCK DIAGRAM	8
7.	DESCRIPTION OF OPTIONS	8
8.	OUTPUT PROTECTION	10
9.	STANDARD FEATURE	10

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Page 4	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

TECHNICAL SPECIFICATION FOR DC-DC CONVERTER

1. SCOPE:-

This specification is applicable for DC-DC Converter (24 V & 48V) for 3-phase Electric locomotives of Indian Railways.

Two types of DC DC converter namely 110/24V and 110/48V are used.

2. SERVICE CONDITION:

2.1 Climatic and environmental condition: -

Maximum atmospheric temperatures : +70°C (In Sun) & + 50°C(In Shade)

Ambient Temperature(operating)
 Ambient Temperature (Storage)
 : -20°C . . . +70°C
 : -30°C . . . +80°C

• Normal Humidity : 60%.

Maximum Humidity : 100% saturation during rainy season.

Altitude : 160 m.a.s.l.

• Rainfall : Very heavy in certain areas. The equipment

should be designed in such away as to withstand it's running at 10 kilometer per

hour in flood water

level of 102 millimeter above rail level.

Atmosphere during hot weather : Extremely dusty and desert terrain in

certain areas.

• Coastal areas : Locomotive and equipment will be

designed to work even in coastal areas in humid and salt laden

atmosphere.

• Vibration. :The equipment subsystem and their

mounting arrangement will be designed to withstand vibration and shock encountered in service as specified in correspondence unless

otherwise prescribed.

3. STANDARD & APPROVAL -

The standard should be as per IEC 60146-3 (1997-01) and other relevant Indian/International Standardsas and when applicable.

Flammability test as per IS: 11731 (Part 1&2):1986 or relevant standard for plastic components.

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Page 5	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

4.	Environment Conditions					
	Mechanical stres	s impulse Voltages,High frequer	ncy disturba	nce, Temperatu	re, MTBF values	
	Test Method	Standard	Test Cond			Status
Ca	Damp Heat Steady State	DIN 40046 part 5 IEC 60068-2-3	Temperatu Relative Hu Time:		40±2°C 93 ^{-3/+2} % 56 Days	Not Operating
Ea	Shock (Half Sinusoidal)	DIN 40046 part 7 IEC 60068-2-27	Acceleratio Bump dura Number of		100 g _n =981 m/s ² 6 ms 9 (3 each axis)	Operating
Eb	Continuous shock (Half Sinusoidal)	DIN 40046 part 26 IEC 60068-2-29	Acceleratio Bump dura Number of		40 g _n =392 m/s ² 6 ms 6000 (2000 each axis)	Operating
Fc	Vibration (Sinusoidal)	DIN 40046 part 8 IEC 60068-2-6	Max. Vibrat	(1 Okt/min): tion Amplitude: n Amplitude: on:	102000Hz 0.35mm (1060Hz) 5 g =49 m/s²(602000Hz) 7.5 h (2.5 h each axis)	Operating
Impu	ulse Voltage Withstand Test	IEC 60255-4 Appendix E IEC 60255-27	Class III:	5 KV (1.2/50	us; 500 Ω)	Not Operating
High – Frequency Disturbance Test		IEC 60255-4 Appendix E IEC 60255-26 IEC 61000-4-18 (basic standard) IEC 60255-22-1 (test procedure & acceptance criteria)	Class II:	Long 2.5 KV	Γrans: 1.0KV (200 Ω)	Operating
	e Test	IEC 801-5	Class I:	0.5 KV (1.2 k\	//50 μs; 2 Ω)	Operating
Emis	ssion test	IEC 62236 / IEC 61000-6-4 (basic standard & test setup as per CISPR 16-2-1)				

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Page 6	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

	Temperature		Stan	dard-7	Op	tion-9	Unit
Ch	aracteristics	Conditions	Min	Max	Min	Max	
Та	Ambient temperature	UiminUimax	-25	+71	-40	+71	°C
Tc	Case temperature	$I_o = 0I_{onom}$	-25	+95	-40	+95	
Ts	Storage temperature	(Not Operational)	-55	+100	-55	+100	

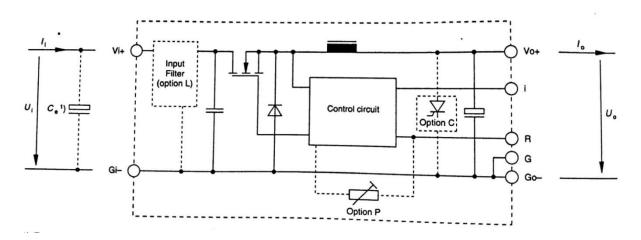
MTBF	Ground Benign	Ground	Ground Mobile	
MTBF according to	Tc=40°C	Tc=40°C	Tc=70°C	Tc=50°C
MIL-HDBK-217F	624'000 h	207'000 h	96'000 h	46'000 h

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Page 7	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

5. DATA: INPUT VOLTAGE RANGE

General Conditions: T_A= + 25°C (unless Tc is specified)


С	haracteristics	Conditions		110/24\	/	11	I 0/48\	/	Unit
	Output		Min	typ	Max	Min	typ	Max	
U₀nom	Output voltage	U1nom I0 max	23.85	24.002	4.14	47.704	8.0048	8.29	V
I ₀ max	Output current (S)	U1 min U1 max		4.0			4.0		Α
ldı	Output current limitation response (s)	TcminTc max	4.0		5.2	4.0		5.2	
U ₀	Output ripple voltage	U _{1nom} I _{0 max} BW=20 MHZ		75	200		150	300	MVpp
△ Uou	Static control deviation versus input voltage U ₁	U1 min U1 max I0 max		70	150		150	300	mV
△ U ₀₁	Static control deviation versus output current lo	U1nom I0= 0 I0 max		70	120			250	
Udd	Dynamic control deviation	U _{1nom}		+120		+	+150		
lo	Load transient recovery time	lo max 0.3. lo max		30			100		μs
U₀	Temperature coefficient △Uo/△Tc (Tc max Tc max)	U1 min U1 max I0 = 0 I0 max	±5 ±0.02			±10 ±0.	02		MV/K K
Input									
U ₁	Input voltage		31		144	58		144	VDC
Δ U ₁₀	Min. diff voltage (U ₁ - U ₀ ²)	I0 = 0 I0 max TcminTcmax		7			10		V
U10	Under voltage look- out			19			40		
I 10	No load input current lo=0	U1 min U1 max			35			45	mA
l ₁	Peak value of Inrush current	U _{1nom}		150			150		Α
l 12	Rise Time			5			5		μs
I 11	Tail half value time			40			40		
I1m	Peak value of Inrush current	U _{1nom} With option L		180			180		Α
l ₁₂	Rise Time			15			15		μs
I 11	Tail half value time			100			100		
U1 RFI	Input RR level, VDE 0871	I0 max U1 min. U1 max			В			В	CB (µv)
Efficiend									
	Efficiency	U1nom I0 max		94			96		%

Prepared By	Спескед Ву	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

The Tenderer's scope of supply includes:

- i) 110/24V DC-DC converter 2 Nos./loco
 - ii) 110/48V DC-DC converter 2 Nos./loco

6. BLOCK DIAGRAM:-

1) External Input circuitry required in rectifier mode and for DC operation only, if the sum of the length of the two input lines without option I, is greater than approx 5 m.

NOTE: - Option 'C' is not applicable for 48 V O/P.

7. DESCRIPTION OF OPTIONS:

Option L Input filter

Option L is recommended to reduce superimposed interference voltages, and to prevent oscillations, if input lines exceed approx. 5m in total length. The fundamental wave (approx. 120 kHz) of the reduced interference voltage between Vi +and Gi – has, with an input line inductance of 5 µH a maximum magnitude of 60mVrms

The input impedance of the switching regulator at 120 kHz is about 17 Ohm. The insertion of a capacitance of for example 1 μ F (plastic foil capacitor), between Vi + and Gi - can achieve a further reduction to approx. 4 mVmax. The harmonics are small in comparison with the fundamental wave. See also data: RFI.

L, the maximum permissible additionally superimposed ripple u₁ of the input voltage (rectifier mode) at a specified input frequency f₁ has the following values:

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Page 9	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

For modules with input up to 40 V:

U₁ max = 12 Vpp at 100 Hz or Vpp * 1200 Hz/f₁

For modules with input up to 80 V:

U1 max = 22Vpp at 100 Hz or Vpp * 2200 Hz/f,.

Modules with input up to 144 V are specially designed for battery driven applications

Option P Potentiometer

Option P excludes R function. The output voltage Uo can be adjusted with a screwdriver in the range from 0.92... 1.08 of the nominal output voltage Uo nom.

However, the minimum differential voltage \triangle U₁₀ min between input and output voltages as specified in chapter 5, must be maintained.

Option C Thyristor Crowbar

This option is recommended to protect the load against power supply malfunction, but it is not designed to sink external current.

A fixed value monitoring circuit checks the output voltage Uo. When the trigger voltage U_{oc} is exceeded, the thyristor crowbar triggers and disables the output. It may be deactivated by removal of the input voltage. In case of a switching transistor defect, an internal fuse prevent excess current.

Note: As a central overvoltage protection device, the crowbar is usually connected to the external source via distributed inductance of the lines. For this reason, the overvoltage at the load can temporarily exceed the trigger voltage $U_{\rm oc}$. Depending on the application, further decentralized overvoltage protection elements may have to be used additionally.

Characteri	stics	Conditions	24V		48V		Unit
			Min	Max	Min	Max	
Uoc	Trigger voltage	U1minU1 max I0 = 0I0nom	27	31	55	61	V
I 1	Delay Time	TcminTcmax		1.5		1.5	μs

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Page 10	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

8) OUTPUT PROTECTIONS

Each output is protected against overvoltages which could occur due to a failure of control circuit. A voltage suppressor diode, turning in worst case into short circuit condition, provides protection. The suppressor diode would not be designed to withstand externally applied over voltages.

9) STANDARD FEATURES

I Inhibit

Note: With open I. output in enabled (Uo. . .00)

The inhibit input allows the switching regulators to be disabled via a control signal. In systems with several units, this feature can be used, for example, to control the activation sequence of the regulators by a logic signal (TTL, C-MOS. etc.).

With an inhibited output, the switching regulator has a typical input current I₁ of 8 to 15 mA.

An output voltage overshoot will not occur, when the units are switched on or off.

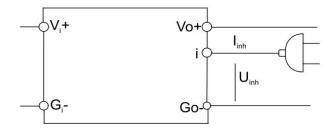


Fig 2 Definition of I_{inh} and U_{inh}

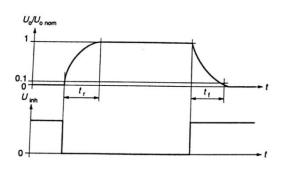


Fig. 3
Output response as a function of inhibit signal

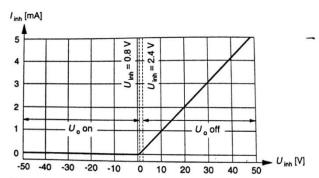
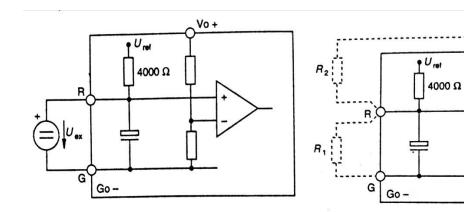



Fig. 4 Inhibit current $I_{\rm inh}$ versus inhibit voltage $U_{\rm inh}$

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Voltage adjustment with Uex [V] between R and G (Go-):

a)
$$U_0 = U_{ex}^* \frac{U \text{ o nom}}{U \text{ ref}} (U_{ref} = 2.5 \text{ V} \pm 2\%)$$

Voltage adjustment with external resistor R_1 or $R_2[\Omega]$

b) $U_0 = 0.....100 \% U_{onom}$, using R_1 between R and G (G_0) ;

$$U_o = U_{onom} * \frac{R1}{R1 + 4000} R_1 = \frac{4000 * Uo}{Uo \ nom - Uo}$$

c) $U_0 = U_0 nom \dots U_{omax}$ using R_3 between R and V_0

$$U_{omax} = U_{o nom} + 8 \%$$

$$U_0 = U_{ref} * \frac{R2}{K*(R2+4000)-4000} K = \frac{Uref}{Uo\ nom}$$

R₃ = 4000 *
$$\frac{\text{Uo}*(1-\text{K})}{\text{K}*\text{Uo-Uref}}$$
, (U_{ref}= 2.5 V ± 2%)

All formulae give approximate values only-

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

Page 12	DC DC CONVERTER	ALT 'B' C
of 12	SPECIFICATION No: CLW/ES/3/0054	

Data:

Characte	eristics		Conditions	min	typ	Max	Unit
Umin	Inhibit input	$U_0 = on$	U1min U1max	-50		+ 0.8	VDC
	voltage to keep regulator voltage	$U_0 = off$	Tcmin Tcmax	+ 2.4		+ 50	
Ī1	Switch-on time after inhibit command ¹		U1 = U1nom		5		ms
Ī1	Switch-off time after inhibit command ¹		RL = U0nom I0nom		10		
I1 off	Input current when inhibited		$I_0 = 0_1 \ U_1 = U_1 nom$		10		mΑ

¹⁾ Family dependent; shorter with lower input voltage and longer with higher input voltage.

R External Output Voltage Adjustment

Note: With open R input. Uo= Uonom

(For superseded PSR types, Uo= 1.08 • Uonom)

R-input and option P cannot be supported simultaneously.

The output voltage Uo can either be adjusted with $U_0 = 1.08 * U_0 nom$.

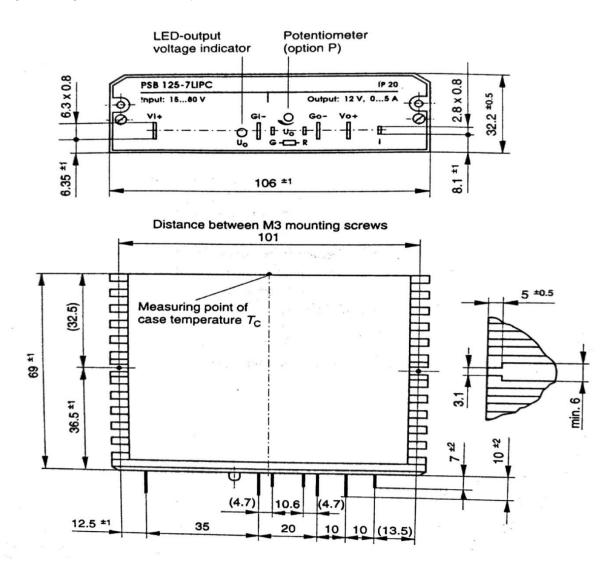
Manufacturers Reference:

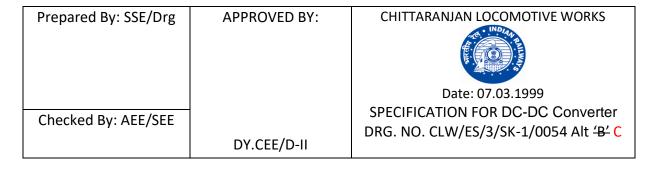
M/s. MELCHER AG,

Ackerstrasse 56, CH- 8610 Vster

Tel: (01) 944 81 11, Fax: 01 940 9858.

OEM Model No.

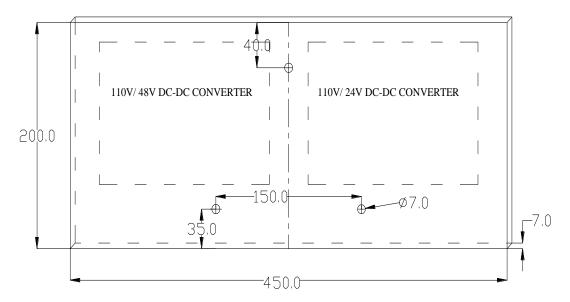

1) MEC-PSB-243-7 LIR B02......110V/24V DC-DC Converter


2) MEC-PSB-483-7 LIR B02......110V/48V DC-DC Converter

Prepared By	Checked By	Approved By
JE/SSE-DESIGN	AEE/SEE-DESIGN	Dy.CEE/D-II

MECHANICAL DIMENSIONS:

Existing Drawing for reference only.



Existing drawing no CLW/ES/3/SK-1/0054 Alt-B in the specification which is for reference only.

The Maximum overall allowable Dimension of DC-DC Converter are as follows: -

Max. Length: 183 mm
 Max. Width: 124 mm
 Max. Height: 89 mm

Dimension of Panel Mounting Plate of DC-DC Converter:

Note:-

- 1. All dimensions are in mm.
- 2. BAKELITE/ GLASS EPOXY sheet thickness 7mm±1
- **3.** Two DC-DC Converters (110V/24V and 110V/48V) must be fitted with Panel mounting plate without any fouling Panel mounting holes.

Prepared By: SSE/Drg	APPROVED BY:	CHITTARANJAN LOCOMOTIVE WORKS
		NO AND
Checked By: AEE/SEE		Date: 07.03.1999
		SPECIFICATION FOR DC-DC Converter
	_	DRG. NO. CLW/ES/3/SK-2/0054 Alt 'B' C
	DY.CEE/D-II	